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Unsupervised learning

Almost every deep-learning product in commercial use today
uses supervised learning, meaning that the neural net is trained
with labeled data (like the images assembled by ImageNet).
With unsupervised learning, by contrast, a neural net is shown
unlabeled data and asked simply to look for recurring patterns.
Researchers would love to master unsupervised learning one
day because then machines could teach themselves about the
world from vast stores of data that are unusable today—making
sense of the world almost totally on their own, like infants.

—Geoffrey E. Hinton
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Unsupervised learning

If you think about it, scientists are doing unsupervised learning:
observing the world, coming up with explanatory models,
testing them by collecting more (targeted, though)
observations, and continuously trying to improve our causal
model of how the world around us works.

—Yoshua Bengio
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Key motivations

However, to understand deep learning as a whole is extremely
difficult and highly challenging.

How does learning improve with data size?
How many data are required to learn a feature?
What key factors determine the success of unsupervised
learning?
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Simple but non-trivial

JW Gibbs (1881)
One of the principal objects of theoretical research...is to find
the point of view from which the subject appears in its greatest
simplicity.
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One-bit Restricted Boltzmann Machine

The posterior distribution of the feature vector:

P(ξ|{σa}) ∝
∏

a

P(σa|ξ) =
1
Z

∏
a

cosh
(

β√
N
ξTσa

)
, (1)
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An intuitive example: data samples (10 by 10)
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An intuitive example: after showing 10N samples

true guess

only one bit is different!!
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Factor graph: Bethe approximation

Pi→a(ξi) ∝
∏

b∈∂i\a

µb→i(ξi), (2a)

µb→i(ξi) =
∑

{ξj |j∈∂b\i}

cosh
(

β√
N
ξTσb

) ∏
j∈∂b\i

Pj→b(ξj), (2b)
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Central limit theorem

µb→i (ξi ) =
∑

{σj |j∈∂b\i}

cosh
(

β√
N
ξTσb

) ∏
j∈∂b\i

Pj→b(ξj ) (3)

Gb→i = 1√
N

∑
j∈∂b\i σ

b
j mj→b, Ξ2

b→i '
1
N

∑
j∈∂b\i (1−m2

j→b).

Huang & Toyoizumi., Phys Rev E (2015).
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Distributed message passing

Simplified Belief Propagation (sBP):

mi→b = tanh

 ∑
a∈∂i\b

ua→i

 , (4a)

ua→i = tanh−1
(

tanh(βGa→i) tanh(βσa
i /
√

N)
)
, (4b)

One iteration requires O(MN) computations!
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Mean field estimator and entropy

The maximizer of the posterior marginals (MPM) estimator

ξ̂i = arg max
ξi

Pi(ξi) (5)

maximizing the overlap q = 1
N
∑

i ξ
true
i ξ̂i .

entropy

s ≡ 1
N ln Ω = − 1

N
∑

ξ P(ξ) ln P(ξ).

—the number of feature vectors consistent with the presented
data.
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Replica theory

Typical behavior: averaged over random features (ξtrue) and
corresponding data ({σa}).

− βf = lim
n→0,N→∞

ln 〈Z n〉
nN

, (6)

〈
Z n〉 =

1
2N

∑
{σa,ξtrue}

P({σa}|ξtrue)
∑
{ξγ}

∏
a,γ

cosh
(
βξγσa
√

N

)
. (7)

Free energy under permutation symmetry of replica matrix:

−βfRS = −qq̂ +
r̂(r − 1)

2
+
αβ2

2
(1− r) +

∫
Dz ln 2 cosh(q̂ +

√
r̂ z)

+αe−β
2/2
∫

Dy
∫

Dt coshβt ln coshβ(qt +
√

r − q2y).

(8)

Huang, JSTAT (2017)
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Entropy/overlap vs. data size
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continuous phase transition αc = β−4 6= αZE in general!
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Phase diagram

sBP is stable, related to Nishimori condition:

ξtrue follows the posterior as well!!

Nishimori, Journal of Physics C: Solid State Physics, 1980; W. Kauzmann, Chem. Rev. (1948).
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Easy-hard-easy learning pattern
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!!!difficult as a linear peak learning time!!!.
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Modeling handwriten digits
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N = 28 × 28, β = 1.
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Entropy
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How cold is a dataset?

Can we predict feature strength directly from the data?
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Temperature of a dataset

The posterior probability of β given the data {σa}Ma=1 is given by

P(β|{σa}) =
∑
ξ

P(β, ξ|{σa}) =

∑
ξ P({σa}|ξ, β)P0(ξ, β)∫

dβ
∑

ξ P({σa}|ξ, β)P0(ξ, β)

=
1

Z ({σa})
∑
ξ

e
−NM ln

(
2 cosh(β/

√
N)

)∏
a

cosh
(

β√
N
ξTσa

)
∝ e−M β2

2 Z (β, {σa}),
(9)

Iterative equation for temperature prediction:
∂ ln Z (β, {σa})

∂β
= Nαβ. (10)

Nishimori condition (physics) vs. EM algorithm (statistics)!
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Test on synthetic data

2 3 4 5 6 7 8
0.00

0.04

0.08

0.12

0.16

|
tru

e|

 N=100, true=1.0
(a)

0 200 400 600

0.4

0.6

0.8

1.0

 M=600
 M=800
 true

(t)
t

Haiping Huang unsupervised feature learning 24 / 28



Intro model phase trans temp zero synapses sum

Test on (0,1) handwriten digits
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(b)MNIST(0&1) dataset
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Zero synapses: concept formation

ρ—sparsity level of synapses: mcav—overall strength of messages
Huang, arXiv:1703.07943
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Summary

Data determines the weight uncertainty.
(dis)continuous phase transitions revealed.
Easy-hard-easy unsupervised learning pattern discovered.
A quantitative measure of how cold a dataset is provided.
Role of zero synapses revealed.
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