Machine Learning and－Many－Body Physics

Sparse modeling approach

 to analytical continuation and compression of imaginary－time quantum Monte Carlo data
Junya Otsuki

Tohoku University

M. Ohzeki

Tohoku University
Statistical information Sparse modeling

H. Shinaoka

Saitama University
Comput. material sci. QMC method

K. Yoshimi ISSP, University of Tokyo

High Performance Comp.
application of Sparse modeling
$=$ Technique: denoising, basis selection

New analytical continuation method
JO, Ohzeki, Shinaoka, Yoshimi, PRE 95, 061302(R) (2017)
extract Essense

Finding an efficient basis
Shinaoka, JO, Ohzeki, Yoshimi, arXiv:1702.03054

INTRODUCTION I:

Two Problems
in Quantum Many-body Computations

Statistical mechanics

quantum

$$
Z=\operatorname{Tr} e^{-\beta \mathcal{H}}
$$

\mathcal{H} : Hamiltonian matrix

$$
\operatorname{dim}=\mathcal{O}\left(e^{N}\right)
$$

cannot be diagonalized
c.f. Time evolution operator in quantum mechanics

$$
U(t)=e^{-i t \mathcal{H}}
$$

$\underset{\text { time }}{\text { imaginary }}$ it $\rightarrow \tau \int_{0}^{\beta} d \tau$
quantum Monte Carlo diagrammatic expansion

Why analytical continuation is necessary?

Quantity we want to know

$$
\rho(\omega)=-\frac{1}{\pi} \operatorname{Im} G^{\mathrm{R}}(\omega)
$$

Ex.: ARPES spectra Spin excitations

Retarded Green function

$$
\begin{array}{r}
G^{\mathrm{R}}(t)=-i \theta(t)\left\langle[A(t), B]_{ \pm}\right\rangle \\
A(t)=e^{i H t} A e^{-i H t}
\end{array}
$$

difficult to handle

"imaginary-
time"

$$
i t \rightarrow \tau
$$

$$
\begin{array}{r}
G(\tau)=-\left\langle T_{\tau} A(\tau) B\right\rangle \\
A(\tau)=e^{\tau H} A e^{-\tau H}
\end{array}
$$

better for calculations (diagrammatic expansion quantum Monte Carlo)

Analytical continuation is noise sensitive

The standard method: Pade approximation

Vidberg, Serene, 1977

CT-QMC data
$\rho(\omega)$

Lehmann rep

$$
\boldsymbol{G}=K \boldsymbol{\rho} \quad \stackrel{\text { discretize }}{\longleftarrow} \quad G(\tau)=\int_{-\infty}^{\infty} d \omega K_{ \pm}(\tau, \omega) \rho(\omega)
$$

Evaluate $\boldsymbol{\rho}$ for a given \boldsymbol{G}

$$
K_{ \pm}(\tau, \omega)=\frac{e^{-\tau \omega}}{1 \pm e^{-\beta \omega}} \quad \begin{aligned}
& \text { fermion } \\
& \text { boson }
\end{aligned}
$$

difficulty: K is an ill-conditioned matrix

Least square sulution
$\boldsymbol{\rho}=\left(K^{\frac{t}{b}} K\right)-1 K^{\mathrm{t}} \boldsymbol{G}$
unstable (NaN)
taking orrors into account
$\chi^{2}(\boldsymbol{\rho}) \equiv \frac{1}{2}\|\boldsymbol{G}-K \boldsymbol{\rho}\|_{2}^{2}<\eta$
infinite number of solutions
(almost all are unphysical)

Related investigations

Maximum entropy method
M. Jarrell, J. E. Gubernatis, Phys. Rep. 269, 133 (1996)

$$
F(\boldsymbol{\rho})=\frac{1}{2}\|\boldsymbol{G}-K \boldsymbol{\rho}\|_{2}^{2}+\alpha \sum_{i}\left[\rho_{i}-m_{i}-\rho_{i} \log \left(\rho_{i} / m_{i}\right)\right]
$$

m : "default model" = priorknowledge
penalty against deviation from m

Stochastic method

A. W. Sandvik, PRB 57, 10287 (1998)
A. S. Mishchenko et al. PRB 62, 6317 (2000)
S. Fuchs, T. Pruschke, and M. Jarrell, PRE 81, 056701 (2010)
K. S. D. Beach, arXiv:cond-mat/0403055
A. W. Sandvik, PRE 94, 063308 (2016)

Growing attempts
K. S. D. Beach, R. J. Gooding, and F. Marsiglio, PRB 61, 5147 (2000)
A. Dirks et al., Phys. Rev. E 87, 023305 (2013).
F. Bao et al., PRB 94, 125149 (2016)
O. Goulko et al., PRB 95, 014102 (2017).
G. Bertaina, D. Galli, and E. Vitali, arXiv:1611.08502.
L.-F. Arsenault et al., arXiv:1612.04895.

Dynamical susceptibility

$\chi(\boldsymbol{q}, \omega)$

Ex.:
spin excitation

inelastic neutron scat.
$\mathrm{URu}_{2} \mathrm{Si}_{2}$
Wiebe et al. 2007

To compute $\chi(q, i \omega)$

Tensor product

Effective interactions

$$
\Gamma_{1234}\left(\boldsymbol{k}, i \omega, \boldsymbol{k}^{\prime}, i \omega^{\prime} ; \boldsymbol{q}, i \nu\right)
$$

Parquet equation Bickers, White 1991
Functional RG (fRG) Metzner et al. 2012
(a)

Beyond dynamical mean-field theory (DMFT) Georges et al. 1996

- DГA Kusunose 2006, Toschi et al 2006
- dual fermion approach Rubtsov et al. 2008, Hafermann et al. 2009
- fRG extensions Tranto et al. 2014

a^{\prime}

b

f

How to handle efficiently

$\Gamma\left(i \omega_{n}, i \omega_{n^{\prime}} ; i \nu_{m}\right)$

A sparse-modeling solution

- Solution to
- Problem I (analytical continuation)
extract relevant information, basis selection denoising
- Problem II (two-particle objects)

Compact representation of correlation functions

SOLUTION to problem 1

Sparse-Modeling (SpM) Analytical Continuation

$G(\tau) \rightarrow \rho(\omega)$

JO, Ohzeki, Shinaoka, Yoshimi, PRE 95, 061302(R) (2017)

$$
\begin{aligned}
& \text { Analytical } \\
& \text { continuation }
\end{aligned} \quad G=K \rho
$$

Sparseness

II

"There is only a little information that is not disturbed by noise"

Sparseness is basis-dependent

Q. Which basis makes ρ sparse ?

$$
\rho^{\prime}=V^{\mathrm{t}} \boldsymbol{\rho} \quad \boldsymbol{G}^{\prime}=U^{\mathrm{t}} \boldsymbol{G}
$$

SVD
$K=U S V^{\mathrm{t}}$
$\because K$ is an ill-conditioned matrix

$$
\begin{aligned}
\chi^{2}(\boldsymbol{\rho}) & =\frac{1}{2}\|\boldsymbol{G}-K \boldsymbol{\rho}\|_{2}^{2} \\
& =\frac{1}{2}\left\|\boldsymbol{G}^{\prime}-S \boldsymbol{\rho}^{\prime}\right\|_{2}^{2}
\end{aligned}
$$

Components of ρ^{\prime} that has small s_{l} is indefinite

Procedure 2: LI regularization

Sparseness

$$
F\left(\boldsymbol{\rho}^{\prime}\right) \equiv \frac{1}{2}\left\|\boldsymbol{G}^{\prime}-S \boldsymbol{\rho}^{\prime}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{\rho}^{\prime}\right\|_{1}
$$

L1 norm

$$
\left\|\boldsymbol{\rho}^{\prime}\right\|_{1} \equiv \sum_{i}\left|\rho_{i}^{\prime}\right|
$$

LASSO-type optimization (Least Absolute Shrinkage of Selection Operators)
R. Tibshirani, J. R. Stat. Soc. B 58, 267 (1996)

$$
\begin{gathered}
\text { non-negative } \quad \text { sum-rule } \\
\rho_{i} \geq 0, \quad \sum_{i} \rho_{i}=1
\end{gathered}
$$

ADMM algorithm (alternating direction method of multipliers)
Boyd et al., Foundations and Trends in Machine Learning 3, 1 (2011)

Test data

$$
G(\tau)
$$

ρ

In ordinary situation, this is directly computed e.g. by QMC

Results

regularization
parameter
too strong
optimal

too weak

output
input data $\quad \boldsymbol{G}^{\prime}=U^{\mathrm{t}} \boldsymbol{G}$

regularization

parameter
too strong
optimal

too weak

input (w/ noise)
exact (w/o noise) result

For a given λ

SOLUTION to problem II
Intermediate Representation (IR)

$$
\Gamma\left(i \omega_{n}, i \omega_{n^{\prime}} ; i \nu_{m}\right)
$$

Shinaoka, JO, Ohzeki, Yoshimi, arXiv:1702.03054

Effective interactions

Dynamical mean-field approximation

$$
\begin{aligned}
& \Sigma(\boldsymbol{k}, i \omega) \rightarrow \Sigma_{\mathrm{loc}}(i \omega) \\
& \Gamma\left(\boldsymbol{k}, i \omega, \boldsymbol{k}^{\prime}, i \omega^{\prime} ; \boldsymbol{q}, i \nu\right) \rightarrow \Gamma_{\mathrm{loc}}\left(i \omega, i \omega^{\prime} ; i \nu\right)
\end{aligned}
$$

c.f. Hubbard interactions

$$
\Gamma\left(i \omega, i \omega^{\prime} ; i \nu\right)=U
$$

Effective interactions in SCES are strongly frequency dependent

$\Gamma\left(i \omega, i \omega^{\prime} ; i \nu\right)$

Can we parameterize?

c.f. Landau parameter in Fermi liquid theory

$$
\Gamma\left(\boldsymbol{k}, \boldsymbol{k}^{\prime} ; \boldsymbol{q}=0\right)=\sum_{l=0}^{\infty} F_{l} P_{l}\left(\cos \theta_{\boldsymbol{k}, \boldsymbol{k}^{\prime}}\right)
$$

Which basis best describes frequency dependences?

Look at the input data again

Original imaginary time data

$$
G(\tau)
$$

After transformation

$$
\boldsymbol{G}^{\prime}=U^{+} \boldsymbol{G}
$$

$\boldsymbol{G}^{\prime}=U^{\mathrm{t}} \boldsymbol{G}$
can be used for data compression

A new orthogonal basis set

Lehmann rep

$$
\begin{gathered}
G(\tau)=\int_{-\omega_{\max }}^{\omega_{\max }} d \omega K_{ \pm}(\tau, \omega) \rho(\omega) \\
K_{ \pm}(\tau, \omega)=\frac{e^{-\tau \omega}}{1 \pm e^{-\beta \omega}}
\end{gathered}
$$

$$
K(\tau, \omega)=\sum_{l=0}^{\infty} s_{l} u_{l}(\tau) v_{l}(\omega)
$$

$$
\Lambda \equiv \beta \omega_{\max }
$$

dimensionnless

Legendre polynomial in the limit $\Lambda \rightarrow 0$
(high-T)

$$
G(\tau)=\sum_{l=0}^{\infty} G_{l} u_{l}(\tau)
$$

c.f. power decay in Fourier rep

Legendre expansion Boehnke et al. 2011

Check if the original function can be reproduced

$$
G(\tau) \stackrel{?}{=} \sum_{l=0}^{l_{\text {cutoff }}} G_{l} u_{l}(x)
$$

Two-particle Green function

$$
\chi\left(\tau, \tau^{\prime} ; 0\right)=\sum_{l, l^{\prime}=0}^{\infty} \chi_{l l^{\prime}} u_{l}(\tau) u_{l^{\prime}}\left(\tau^{\prime}\right)
$$

Former study Boehnke et al. 2011

SVD basis

Legendre basis $\left|\tilde{\chi}_{l l^{\prime}}\left(\mathrm{i} \omega_{0}\right) / \tilde{\chi}_{00}\left(\mathrm{i} \omega_{0}\right)\right|$

Parameterizing effective interactions

$\Gamma_{1234}\left(\boldsymbol{k}, i \omega_{n}, \boldsymbol{k}^{\prime}, i \omega_{n^{\prime}}\right)$

$$
\boldsymbol{q}=0, \nu_{m}=0
$$

Spin, Charge, Orbital (irreducible rep)

Dynamical version of Landau parameters?

Everything in IR basis!

- QMC measurement
- Bethe-Salpeter equation
- Parquet equation
$\rho(\omega)$
$\xrightarrow{\mathrm{Re}}$

Summary

- Analytical continuation
I. SVD of the kernel
II. Basis selection by L1 regularization

https://github.com/j-otsuki/SpM
- Efficient basis set
- Extremely compact representation
- QMC measurement, diagrammatic calculations, etc

extract essence by sparse modeling

