Machine Learning and Many-Body Physics 中国科学院大学卡弗里理论科学研究所 Kavli Institute for Theoretical Sciences at UCAS 2017-06-28--2017-07-07 Beijing # Self-Learning quantum Monte Carlo method in interacting fermion systems Xiao Yan Xu (许霄琰) IOP, CAS 7/7/2017 ### Serials works on SLMC IOP: Zi Hong Liu, Zi Yang Meng MIT: Junwei Liu, Yang Qi, Huitao Shen, Yuki Nagai, Liang Fu **UM: Kai Sun** arXiv:1610.03137 arXiv:1611.09364 arXiv:1612.03804 arXiv:1705.06724 arXiv:1706.10004 Similar work from Li Huang, Yi-feng Yang, Lei Wang arXiv:1610.02746 arXiv:1612.01871 ## The power of SLMC - Reduce the time cost per sweep For 100×100×20 lattice DQMC ~150000 seconds/sweep SLMC ~ 500 seconds/sweep - Reduce the auto-correlation time DQMC ~ may scale with system size at critical point SLMC ~ constants ideally, model dependent **Determinantal QMC (DQMC)** ## DQMC(BSS algorithm) PHYSICAL REVIEW D VOLUME 24, NUMBER 8 15 OCTOBER 1981 #### Monte Carlo calculations of coupled boson-fermion systems. I #### R. Blankenbecler* Laboratoire de Physique Théorique et Hautes Energies, University of Paris XI, 91405, Orsay, France #### D. J. Scalapino and R. L. Sugar Institute for Theoretical Physics and Department of Physics, University of California, Santa Barbara, California 93106 (Received 15 June 1981) We present a formalism for carrying out Monte Carlo calculations of field theories with both boson and fermion degrees of freedom. The basic approach is to integrate out the fermion degrees of freedom and obtain an effective action for the boson fields to which standard Monte Carlo techniques can be applied. We study the structure of the effective action for a wide class of theories. We develop a procedure for making rapid calculations of the variation in the effective action due to local changes in the boson fields, which is essential for practical numerical calculations. ## DQMC(BSS algorithm) $$S = S_B + \int d\tau \int d^dx \, \psi^{\dagger}(x,\tau) \hat{O}\psi(x,\tau) \qquad e^{-S_{\text{eff}}} = e^{-S_B} \det \hat{O}$$ $$D = \det_{x,\tau} \left(\frac{\partial}{\partial \tau} + H \right) \sim (\beta N)^{3}$$ $$= \det_{x} \left[I + T \exp \left(- \int_{0}^{\beta} d\tau \, H(\tau) \right) \right] \sim \beta N^{3}$$ ## **DQMC** basics #### **Slater determinant and its properties** #### Occupation number representation $$Ne$$ particle states $\hat{c}_1^{\dagger}\hat{c}_2^{\dagger}\cdots\hat{c}_{N_e}^{\dagger}|0\rangle$ operator with form $$\hat{u} \equiv e^{-\hat{\mathbf{c}}^{\dagger} \mathbf{A} \hat{\mathbf{c}}}$$ $$\text{operator with form} \ \ \hat{u} \equiv e^{-\hat{\mathbf{c}}^{\dagger}\mathbf{A}\hat{\mathbf{c}}} \qquad \ \ \hat{u}\hat{c}_{1}^{\dagger}\hat{c}_{2}^{\dagger}\cdots\hat{c}_{N_{e}}^{\dagger}|0\rangle = \prod_{i=1}^{N_{e}}\left(\hat{\mathbf{c}}^{\dagger}e^{-\mathbf{A}}\right)_{i}|0\rangle$$ #### overlap of slater determinant $$|\Psi\rangle = \prod_{i=1}^{N_e} (\hat{\mathbf{c}}^{\dagger} \mathbf{P})_i |0\rangle \qquad |\tilde{\Psi}\rangle = \prod_{i=1}^{N_e} (\hat{\mathbf{c}}^{\dagger} \tilde{\mathbf{P}})_i |0\rangle$$ $$\langle \Psi | \tilde{\Psi} \rangle = \det \left[\mathbf{P}^{\dagger} \tilde{\mathbf{P}} \right]$$ ## **DQMC** basics # Hubbard-Stratonovich transformation deal with interaction term A continuous form $$\exp(\frac{1}{2}\hat{A}^2) = \sqrt{2\pi} \int d\phi \exp(-\frac{1}{2}\phi^2 - \phi\hat{A})$$ #### Other examples $$e^{-\Delta \tau U(\hat{n}_{\uparrow} - 1/2)(\hat{n}_{\downarrow} - 1/2)} = \frac{1}{2} e^{-\Delta \tau |U|/4} \sum_{s = \pm 1} e^{\alpha s(\hat{n}_{\uparrow} - \hat{n}_{\downarrow})}, \quad U > 0$$ $$= \frac{1}{2} e^{-\Delta \tau |U|/4} \sum_{s = \pm 1} e^{\alpha s(\hat{n}_{\uparrow} + \hat{n}_{\downarrow} - 1)}, \quad U < 0$$ $$e^{\Delta \tau W \hat{A}^2} = \frac{1}{4} \sum_{l=+2,+1} \gamma(l) \exp\left(\sqrt{\Delta \tau W} \phi(l) \hat{A}\right) + o(\Delta \tau^4)$$ ## **DQMC** #### **Trotter decomposition** $$Z = \operatorname{Tr}\left[e^{-\beta \hat{H}}\right] = \operatorname{Tr}\left[\left(e^{-\Delta_{\tau}\hat{H}_{I}}e^{-\Delta_{\tau}\hat{H}_{0}}\right)^{M}\right] + \mathcal{O}(\Delta_{\tau}^{2})$$ #### **HS** transformation $$Z = \sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{s} \operatorname{Tr} \left[\prod_{\tau=M}^{1} e^{\hat{\mathbf{c}}^{\dagger} \mathbf{V}(\mathcal{C}) \hat{\mathbf{c}}} e^{-\Delta_{\tau} \hat{\mathbf{c}}^{\dagger} \mathbf{T} \hat{\mathbf{c}}} \right] + \mathcal{O}(\Delta_{\tau}^{2})$$ #### Trace out fermions (trace over all Ne particle basis, Ne=1,...,N) $$Z = \sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{s} \operatorname{Tr} \left[\hat{U}(\beta, 0) \right] \qquad \hat{U}(\tau_{2}, \tau_{1}) = \prod_{n=n_{1}+1}^{n_{2}} e^{\hat{\mathbf{c}}^{\dagger} \mathbf{V}(\mathcal{C}) \hat{\mathbf{c}}} e^{-\Delta_{\tau} \hat{\mathbf{c}}^{\dagger} \mathbf{T} \hat{\mathbf{c}}}$$ $$Z = \sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{s} \det \left[\mathbf{1} + \mathbf{B}(\beta, 0) \right] \qquad \mathbf{B}(\tau_{2}, \tau_{1}) = \prod_{n=n_{1}+1}^{n_{2}} e^{\mathbf{V}(\mathcal{C})} e^{-\Delta_{\tau} \mathbf{T}}$$ ## **DQMC** #### partition function $$Z = \sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{s} \det \left[\mathbf{1} + \mathbf{B}(\beta, 0) \right]$$ #### Importance sampling of configurations $$\langle \hat{O} \rangle = \sum_{\mathcal{C}} \mathcal{P}_{\mathcal{C}} \langle \hat{O} \rangle_{\mathcal{C}}$$ $$\approx \frac{1}{N_{\text{sample}}} \sum_{i=1}^{N_{\text{sample}}} \langle \hat{O} \rangle_{\mathcal{C}_{i}}$$ $$\mathcal{P}_{\mathcal{C}} = \frac{\nabla}{\sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{s} \det\left[\mathbf{1} + \mathbf{B}(\beta, 0)\right]} \\ \langle \hat{O} \rangle_{\mathcal{C}} = \frac{\operatorname{Tr}\left[\hat{U}(\beta, \tau)\hat{O}\hat{U}(\tau, 0)\right]}{\operatorname{Tr}\left[\hat{U}(\beta, 0)\right]}$$ $$\mathcal{P}_{\mathcal{C}} = \frac{\mathcal{W}_{\mathcal{C}}^{s} \det\left[\mathbf{1} + \mathbf{B}(\beta, 0)\right]}{\sum_{\mathcal{C}} \mathcal{W}_{\mathcal{C}}^{s} \det\left[\mathbf{1} + \mathbf{B}(\beta, 0)\right]}$$ $$\langle \hat{O} \rangle_{\mathcal{C}} = \frac{\operatorname{Tr}\left[\hat{U}(\beta, \tau)\hat{O}\hat{U}(\tau, 0)\right]}{\operatorname{Tr}\left[\hat{U}(\beta, 0)\right]}$$ ## **Application of DQMC** ### **Coupled Fermion-boson lattice systems** Interacting systems after HS transformation Hubbard like models Mott transition, chiral Ising and chiral Heisenberg transition, bosonic SPT etc. build-in coupled fermion-boson AFM in metal, SDW, nematic QCP, FM QCP, Z2 deconfined phase transtion ## **Issues of DQMC** - Local update is level 1 BLAS algorithm Size limited, L=20 is the typical size - (critical) slowing down in some models build-in coupled fermion-boson problem #### Slowing down for some models in DQMC Complexity for getting an independent configuration: $\beta N^3 \tau_L$ ## **Self-learning DQMC** arXiv:1612.03804 arXiv:1706.10004 #### Self-Learning Monte Carlo $$Z = \sum_{\{C\}} \phi(C) \det (\mathbf{1} + \mathbf{B}(\beta, 0; C))$$ $$-\beta H^{\text{eff}}[C] = \ln\left(\omega[C]\right)$$ (b) Local update following effective Hamiltonian $$H^{\text{eff}} = E_0 + \sum_{(i\tau);(j,\tau')} J_{i,\tau;j\tau'} s_{i,\tau} s_{j,\tau'} + \cdots$$ (iii) Cumulative Proposal Current Trial Next Conf. $$A(\mathcal{C} \to \mathcal{C}') = \min \left\{ 1, \frac{\exp\left(-\beta \left(H[\mathcal{C}'] - H^{\text{eff}}[\mathcal{C}']\right)\right)}{\exp\left(-\beta \left(H[\mathcal{C}] - H^{\text{eff}}[\mathcal{C}]\right)\right)} \right\}$$ arXiv:1612.03804 #### Self-Learning Determinantal Quantum Monte Carlo #### Complexity - Cumulative update: $\gamma \beta N \tau_L$ - Detail balance: N^3 $$\omega_{\mathcal{C}} = \phi(\mathcal{C}) \det (\mathbf{1} + \mathbf{B}(\beta, \tau) \mathbf{B}(\tau, 0))$$ $$= \phi(\mathcal{C}) \det (\mathbf{G}(0, 0))^{-1}$$ • Sweep Green's function: βN^2 $$\mathbf{G}(\tau+1,\tau+1) = \mathbf{B}(\tau+1,\tau)\mathbf{G}(\tau,\tau)\mathbf{B}^{-1}(\tau+1,\tau)$$ Complexity speed up $$S = \min\left(\frac{N^2}{\gamma}, N\tau_L, \beta\tau_L\right)$$ #### Self-Learning Determinantal Quantum Monte Carlo #### Self-Learning Determinantal Quantum Monte Carlo #### Using SLDQMC to attack hard problems #### Itinerant quantum critical point with frustration arXiv:1706.10004 Non-fermi liquid behavior on hot spots dynamical exponents z=2 L=30, beta=30 (30×30×600) Linear T dependence in spin susceptibility $$\begin{split} \chi(T,h,\mathbf{q},\omega_n) = & \frac{1}{(c_tT+c_t'T^2)+c_h|h-h_c|^{\gamma}+c_q|\mathbf{q}|^2+(c_{\omega}\omega+c_{\omega}'\omega^2)} \end{split}$$ Hertz-Millis-Moriya theory on finite momentum QCP ## Summary and outlook **SLMC** can be used to attack some hard problems How general can it be is still a question #### Self-Learning Monte Carlo $$Z = \sum_{\{C\}} \phi(C) \det (\mathbf{1} + \mathbf{B}(\beta, 0; C))$$ $$-\beta H^{\text{eff}}[C] = \ln\left(\omega[C]\right)$$ (b) Local update following effective Hamiltonian $$H^{\text{eff}} = E_0 + \sum_{(i\tau);(j,\tau')} J_{i,\tau;j\tau'} s_{i,\tau} s_{j,\tau'} + \cdots$$ (iii) Cumulative Proposal $A(\mathcal{C} \to \mathcal{C}') = \min \left\{ 1, \frac{\exp\left(-\beta \left(H[\mathcal{C}'] - H^{\text{eff}}[\mathcal{C}']\right)\right)}{\exp\left(-\beta \left(H[\mathcal{C}] - H^{\text{eff}}[\mathcal{C}]\right)\right)} \right\}$ arXiv:1612.03804