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FCS (finite correlated state)

Short correlation: non-degenerate maximum eigenvalue of modulus one. (injective, for a brief
explanation, see prb 83,035107)

Positive: A > 0, (left fix point vector, right is 1.)

Pure state: A > 0

E/(X) = X, v An XAl (0 [uln)
=30, () A X (X (! |5 AL ) (5 [l )
=Y e A; XAl

where, {|5)} are eigenvectors of unitary u : u|j) = €% |j)

Lemma 1:
N p&) <1,

2), If exist eigenvalue ), |)\] = 1, then )\ is the unique eigenvalue with modulus one, the
correspond eigenvector V', which is unitary, is not degenerate. This statement is equivenlent to
the condition: V1 A4; = /(6-0) A, V1

Proof:

Let, &, (V) = AV,

Consider, tr(VAV) = tr(VIVA) > 0, since, A > 0, VTV > 0 (positive)
Atr(VAV) = | 3, efitr(A;VAIAVT)

= |32, tr{(VAJVR) (e VAV 4)]

= |3, tr(a]B))|

Where, aj = \/KA]-VT,BJ- — ei0i \/KVTAJ-,

|55 tr(ad )] < /5, tr(atey) - /32 tr(816;),

i.e,

Altr(VAVY) < /S0 tr(VAIAA; V) - /5 tr(ATVAVTAj) = tr(VAVT)

Thus,

A< Liep(€)<1

(Note, we have inner product (a|8) = 3~ tr(a;ﬂj)')



When,

Al = 1, it means o, § linear dependent, i.e,
B =ka,ie B; = ka;, V7,

Thus,

kA;VT = e%iVTA4;,

kY e A VAL =3 A;AlY,

EXV =V,

Thus,

k| =1,

Let, k = €%,

We have,

ViA; =el0-0) AVt

Moreover, consider,

EVIV) =3, AVIVAL = 3 e -0V 4,00 Aly = vy, 44l = ViV
Since & has unique eigenvalue of modulus one (pure state), i.e, £(1) = 1

Viv=1

i.e, V is unitary.

On the contary, if, we have,

VIA; = el0-0) A1

First, follow the argument above, V is unitary.
Then,

eigA;.V = e VA}

e (3, A ANV = 32 e AV Al

eV = &,(V)

Thus, V is the eigenvector of &, with eigenvalue \ = €%, i.e,

A =1

Finally, we prove, for &,, Eigenvalue of modulus one is unique.

. _ o
Suppose we have unitary, V, V' and eigenvalue % ¥

Since, || = |¢" | = 1, must satisfy,

ViA; = el0-0) A1
VA; =00 A,V



EVIV) =X, A VIV Al = eC-Oyty

Since € has unique eigenvalue of modulus one, i.e, Az = 1,
6=0,Viv =1

Consider, V, V' are unitary,

V=V

QED.

Additionally,

E(X) = 0w AL X Ay (nfuln’)

= 30, (2, (nld ) AL X (3, (dln') A ) (5 [ul)

=Y e Al XA,

If p(E,) = 1, i.e, exist unique A = e, 3 VT A; = €/0%) 4, VT, we also have,
E(AVT) = e AVT

Thus, (U7 |u® L) = eLtr(AVIV) = '

Else, if p(£4) < L limp oo (Ui [u®F L) =0

tr[AVTE, (1)]*
=, AV [yln) 4, AT )¢
=3, (nlyt [0/ Yer[AV A4, AT )*
use, VT A, = el0-0) A vt

o (nlyf |0 ei O tr[A A, VT AT ]
Znn, <n]yJr |n’>ei(9" —0) tr[AfL, V*AgA]*
Znn, <n|e‘i9 ugjr |n/Vtr[Ay VA;[1 A]
tr[AE, (V)]

Where, z = e Puyt = ayt
we canletz = dy' ,i.e,y = 2'@
Thus,

tr[AE, (V)] = tr[AVTE, ()]

consider g = |n> (m|
tr[AE, (V)] = tr[AA,, VA
Since, VTA,,LV = ei(e_an)An N AmV _ ei(G—Bm)VAm



tr[AE, (V)] = €0=0n) tr[AV A, Al

Theorem 1:
For a pure FCS,

Exists SO iff exist unitary @ # 1, and n,m, satisfies, 1), £; (V) = V., i.e, p(€,) =1 2),
tr[AVA,AL] #£0,ie z = in)(m|,y = z'a

(@1 is diagonal under basis {|n)})

FCS has local symmetry: Ju, u®V |¥) = €| ¥), i. e, u®NpuT®N

If p(€,) = 1, then, (T |u®N |¥) = N9, thus, has local symmetry, else, (¥ [u®N |T) — 0
Thus, we have theorem,

Theorem 2:

A pure FCS has a local symmetry iff p(€,) = 1 (i.e, A; = e® %)V A, V1, ie, C1) condition.)

We can show the graph.

On the contrary, if FCS has local symmetry,
0# 1 =tr(p) = tr(p?) = tr(pu® pul ®") = (W[uN |W)(W|u " @) = tr[AE,*Y (1)]tr[AE, ®™ (1)

Thus, p(&,) =1

Define,
isometry: B =} |j)A;
E=3,4;® A4,

if FCS has local symmetry, consider u is an element of of a unitary representation of the
symmetry group, according to lemma 2, we have unique V, we have the following three
conditions.

C1). (u®1)B=¢€%(1® V)BVT
C2).E(VXVT) = VEX)VE
C3).[E,(VaV)]=0

Proof:

1. First, we can always consider the basis where w is diagonal, since,

B=210)45 =22, In)(22;(nl5) 45) = 32, [n) An



(u®1)B=73ulj)A; =>;je 0 ei0-0:)V A,V = (1 @ V)BV!
2. E(VXVT)
=Y, A;vxvial
=Y, eO0VAVIVXVie -0y ALyt
=VY,; A, XAV = vex)v

3. [E,(VeV)
=EVQV-VQVE
=24V ® AV — > VA;® VA
=Y, eVA; e CVA - VA 9 VA
=0
Note,

C1) means that V' is a (projective) unitary representation, since,
(Wu®1)B =) (10 V'V)B(V'V)!

C2) means that £ is a group isomorphism, X — £(X)

C3) means that E is a Carsimir operator.

Consider the continuous symmetry, V = ¥
[E,(1+i¢H)® (1 —i¢pH)|=ip|E,HR1 -1 H| =0
Define, linermap, M(H) = [E,H® 1 —1® H|

Thus, FCS has continuous symmetry iff the map M has a nontrivial kernel, i.e,
dH #0,M(H) =0

Note, for continuous symmetry, we can always have SO, since we can choose ¢ small enough,
such that, tr[VA] = tr[A] + igtr[AH] # 0



